Chapter 7 - Inheritance

Chapter Objectives

Derive new classes from existing ones.

Explain how inheritance supports software reuse.
Add and modify methods in child classes.
Discuss how to design class hierarchies.

Define polymorphism and how it can be done.

Chapter Overview: Inheritance is a very important concept in object oriented design and
program writing. This chapter lays a solid foundation for you to understand the concepts behind
inherited classes and interfaces. Polymorphism and inheritance are major concepts in this
chapter.

Multiple Choice: 7.1 — 7.10

True/False: 7.1 — 7.10

Short Answer: 7.3

AP Multiple Choice: 7.1 - 7.6

Programming Projects: 7.2, 7.2 again

Lewis/Loftus/Cocking, 3/e © 2010 Pearson Education



main

Put the following occupations in the hierarchy above:
Hospital Employee, Doctor, Nurse, Custodian, Surgeon.
(Leave space to put the method names).

Put the following methods in the appropriate class: toString, getNumPatients, setNumPatients

setLocation, getLocation, setlsRegistered, getlsRegistered, setName, getName, getID, setlID,
setType, getType, setAge, getAge, setArea, getArea

Project 7.2

Lewis/Loftus/Cocking, 3/e © 2010 Pearson Education



Inheritance

public class Words

{

public static void main (String[] args)

{

Dictionary webster = new Dictionary ();

webster.pageMessage () ;
webster.definitionMessage () ;

public class Book
{

public int pages = 1500;

public void pageMessage ()

{
System.out.println ("Number of pages: " + pages);
}

public class Dictionary extends Book

{

private int definitions = 52500;

public void definitionMessage ()

{

System.out.println ("Number of definitions: " + definitions);

System.out.println ("Definitions per page: " + definitions/pages);

Lewis/Loftus/Cocking, 3/e © 2010 Pearson Education



public class Words2
{

public static void main (String[] args)

{
Dictionary2 webster = new Dictionary2 (1500, 52500);

webster.pageMessage () ;
webster.definitionMessage () ;

public class Book2
{
public int pages;

public Book2 (int numPages)
{
pages = numPages;

}

public void pageMessage ()
{

System.out.println ("Number of pages: " + pages);

}

public class Dictionary2 extends Book2
{

private int definitions;

public Dictionary?2 (int numPages, int numDefinitions)
{

super (numPages);

definitions = numDefinitions;

}

public void definitionMessage ()

{

System.out.println ("Number of definitions: " + definitions);

System.out.println ("Definitions per page: " + definitions/pages);

Lewis/Loftus/Cocking, 3/e © 2010 Pearson Education



public class Messages
{
public static void main (String[] args)
{
Thought parked = new Thought ()
Advice dates = new Advice();

parked.message () ;
dates.message(); // overridden

public class Thought
{

public void message ()

{
System.out.println ("I feel like I'm diagonally parked in a " +
"parallel universe.");

System.out.println();

public class Advice extends Thought
{

public void message ()

{
System.out.println ("Warning: Dates in calendar are closer " +
"than they appear.");
System.out.println();

super.message () ;

Lewis/Loftus/Cocking, 3/e © 2010 Pearson Education



public class Academia
{
public static void main (String[] args)
{
Student Frank = new Student ("Frank", 5);
StudentAthlete Suki = new StudentAthlete ("Suki"™, 4, "Soccer");

System.out.println (F
System.out.println ();
System.out.println (S
System.out.println ()

if (! Frank.equals (Suki))
System.out.println ("These are two different students.");

public class Student

{
private String name;
private int numCourses;

public Student (String studentName, int courses)
{

name = studentName;

numCourses = courses;

}

public String toString()

{
String result = "Student name: " + name + "\n";
result += "Number of courses: " + numCourses;
return result;

}

public class StudentAthlete extends Student
{

private String sport;

public StudentAthlete (String studentName, int courses,
String sportName)
{
super (studentName, courses);
sport = sportName;

}

public String toString()

{
String result = super.toString();
result += "\nSport: " + sport;
return result;

Lewis/Loftus/Cocking, 3/e © 2010 Pearson Education



