Chapter 8 – AP - Recursion

Chapter Objectives

- Explain the underlying ideas of recursion.
- Examine recursive methods and processing steps.
- Define infinite recursion and discuss ways to avoid it.
- Explain when recursion should and should not be used.
- Demonstrate the use of recursion to solve problems. Examine the use of recursion in sorting.

Chapter Objectives: Recursion is a valuable tool in designing algorithms for both simple data structures and calculations as well as more advanced data types. This chapter covers recursion through examples of some classic problems.

<u>Multiple Choice</u>: 8.1 − 8.8, 8.10

True/False: 8.1 - 8.10

Short Answer: 8.2 – 8.4, 8.6 – 8.7

AP Multiple Choice: 8.1 – 8.6

AP Style Free-Response: 8.1

Worksheets: Recursion, Merge Sort, Quick Sort, Review of all sorts

Programming Projects: 8.2, QuickSort into Strings

fact(4) = ???

```
public int fact (int n)
{
    if (1 = = n)
      return 1;
    else
      return n * fact (n - 1);
}
```

Name	,	
1 (41110	·	_

Recursion

Find the output to the following code segments.

```
1. int result = identity(10);
  System.out.println("The final answer is " + result);
  public int identity(int num)
     if (num < 1)
             return 10;
     else
             return num + identity(num - 2);
  }
2. int result2 = negative(-3);
  System.out.println("The final answer is " + result2);
  public int negative(int num)
     if (num >= 20)
        return -5;
     else
        return negative(num + 4) + 2 * num;
  }
3. int result3 = product(1);
  System.out.println("The final answer is " + result3);
  public int product(int num)
     if (num > 20)
        return -1;
     else
        return num * product(-2 * num);
  }
```

```
4. What does mystery(4) print?
public void mystery (int x)
if (x <= 0)
 return;
else
 System.out.print( x + " ");
 mystery(x - 2);
}
5. What does numbuh(4) print?
public void numbuh (int x)
if (x <= 0)
return;
else
 numbuh (x - 2);
 System.out.print(x + " ");}
6. What does value(4) return?
public int value (int x)
if (x <= 0)
 return 1;
else
 return x * value(x- 1);
```

```
7. What does strange(3543) return?
public int strange (int x)
if (x == 0)
 return 0;
 return ((x % 10) + strange(x/10));
}
8. What does whatisit(6) return?
public int whatisit(int x)
if (x == 1)
 return 2;
 return 2 * whatisit(x - 1);
}
9. What does nowwhat(6) return?
public int nowwhat(int x)
if (x == 0)
 return 0;
else
 return x + nowwhat (x/2) + nowwhat (x/4);
}
```

Name:_

Merge Sort

1. Sort the following list using Merge Sort:

32 8 51 86 22 1 -3 5 -26

2. Practice sorting the following data using Merge Sort:

order the list you are currently reading using merge sort

Name_____

QUICKSORT

1. Practice sorting the following data using Quicksort.

28 42 69 8 100 33 36 3 84 21 40 5

2. Practice sorting the following data using Quicksort.

sort these words using quicksort until a recursive call is made

Name:

Review of Sorting Techniques

Sort the following list using each of the four techniques learned in class

45 12 31 76 33 55 72

Selection Sort:

6

24

Quick Sort:

Insertion Sort:

Merge Sort: